THE CHINESE UNIVERSITY OF HONG KONG

DEPARTMENT OF MATHEMATICS MATH3070 (Second Term, 2016–2017) Introduction to Topology Exercise 3 Base of Topology

Remarks. Many of these exercises are adopted from the textbooks (Davis or Munkres).

- 1. What is the topology generated by all closed intervals in \mathbb{R} ?
- 2. Which subset(s) of $\mathcal{P}(X)$ will generate the indiscrete topology?
- 3. Let \mathcal{B}_1 and \mathcal{B}_2 be bases for two topologies \mathfrak{T}_1 and \mathfrak{T}_2 of X respectively. Is $\mathcal{B}_1 \cap \mathcal{B}_2$ a base for some topology?
- 4. If $\mathcal{B}_1 \subset \mathcal{B}_2$ are two bases for the same topology \mathfrak{T} of X, and if $\mathcal{B}_1 \subset \mathcal{A} \subset \mathcal{B}_2$, can we say that \mathcal{A} is a base for \mathfrak{T} ?
- 5. Let $S \subset \mathcal{P}(X)$ and \mathfrak{T}_{S} be the topology generated by S. Show that it is also the smallest topology of X containing S.
- 6. Let S and B be a subbase and base of a topological space (X, \mathfrak{T}) and $A \subset X$. Is there a natural way to create a corresponding subbase and base of the induced topology $\mathfrak{T}|_A$?
- 7. This exercise makes reference to \mathfrak{T}_1 on $\mathcal{C}([a,b],\mathbb{R})$ in HW01. For an open set $U \subset \mathbb{R}$ and a closed interval $K \subset [a,b]$, define a set

$$W_{(K,U)} = \{ f \in \mathcal{C} ([a,b], \mathbb{R}) : \operatorname{graph}(f|_K) \subset K \times U \subset [a,b] \times \mathbb{R} \} .$$

Let \mathfrak{T}_2 be the topology generated by $\{W_{(K,U)}: \text{ closed interval } K \subset [a,b], \text{ open } U \subset \mathbb{R} \}$. What is the relation between \mathfrak{T}_1 and \mathfrak{T}_2 ?

- 8. Let X be a totally ordered set (or called linearly ordered or simply ordered). That is, there is a relation < on X such that any $x, y \in X$ must have x < y or y < x. In such a set, we may naturally define intervals (a, b), etc.
 - Assume that X has neither largest nor smallest elements. Show that $\mathcal{B} = \{(a, b) : a, b \in X\}$ is a base of a topology. What if X has a largest element M or smallest element m?

 Remark. This is called the order topology.
- 9. Let (X,\mathfrak{T}) be a topological base that has a countable base \mathcal{C} . Show that every base \mathcal{B} has $\mathcal{B}_c \subset \mathcal{B}$ such that \mathcal{B}_c is a countable base.
- 10. Fill in carefully the details in the proofs of "A separable metric space is of second countable".
- 11. What are the typical dense subsets in the lower limit topology, cofinite topology, and \mathfrak{T}_{cf0} in HW01?
- 12. This exercsie shows why countability is important. Let (X, \mathfrak{T}) have a countable base \mathcal{B} . Then every uncountable set $A \subset X$ has uncountably many cluster points.

- 13. A topological space is called Lindelof if every open cover has a countable subcover. Show that a Lindelof metric space is of second countable.
 - Remark. This countability condition of Lindelof is somehow more related to compactness. An open cover of X is a subset of the topology, $\mathcal{C} \subset \mathfrak{T}$, such that $\cup \mathcal{C} = X$. A subset $\mathcal{E} \subset \mathcal{C}$ is called a subcover if it is also an open cover.
- 14. Let (X,\mathfrak{T}) be a topological space and $A \subset X$ be given the topology (so-called induced or relative) $\mathfrak{T}|_A$ where

$$\mathfrak{T}|_A = \{ A \cap U : U \in \mathfrak{T} \} .$$

- (a) If X is second-countable or first-countable, then so is A.
- (b) If X is Lindeloff and A is closed, then A is also Lindeloff.
- (c) What about A if X is separable?